Clifton-Pohl torus and geodesic completeness by a 'complex' point of view

نویسنده

  • Claudio Meneghini
چکیده

We show that a natural complexification and a mild generalization of the idea of completeness guarantee geodesic completeness of CliftonPohl torus; we explicitely compute all of its geodesics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N ov 2 00 4 Clifton - Pohl torus and geodesic completeness by a ’ complex ’ point of view ∗

We show that a natural complexification and a mild generalization of the idea of completeness guarantee geodesic completeness of CliftonPohl torus; we explicitely compute all of its geodesics.

متن کامل

A weaker geodesic completeness and Clifton-Pohl torus

We propose a new definition of geodesic completeness, based on analytical continuation in the complex domain: we apply this idea to Clifton-Pohl torus, relating, for each geodesic, completeness to the value of a function of initial conditions, called ’impulse’.

متن کامل

Geodesic completeness for meromorphic metrics; the case of coercive ones

1 0.1 Foreword This thesis is concerned with extending the idea of geodesic completeness from Riemannian (or pseudo-Riemannian) context to the framework of complex geometry: we take, however a completely holomorphic point of view; that is to say, a 'metric' will be a (meromorphic) symmetric section of the twice covariant holomorphic tensor bundle. Moreover, the use of smooth objects will be sys...

متن کامل

Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation

Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...

متن کامل

On the k-nullity foliations in Finsler geometry

Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016